Evolutionary Computing for Low-Thrust Navigation

نویسندگان

  • Seungwon Lee
  • Wolfgang Fink
  • Ryan P. Russell
  • Paul von Allmen
  • Anastassios E. Petropoulos
  • Richard J Terrile
چکیده

The development of new mission concepts requires efficient methodologies to analyze, design, and simulate the concepts before implementation. New mission concepts are increasingly considering the use of ion thrusters for fuel-efficient navigation in deep space. This paper presents parallel, evolutionary computing methods to design trajectories of spacecraft propelled by ion thrusters and assesses the trade-off between delivered payload mass and required flight time. The developed methods utilize a distributed computing environment in order to speed up computation, and use evolutionary algorithms to find globally Paretooptimal solutions. The methods are coupled with two main traditional trajectory design approaches, which are called direct and indirect. In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. In the indirect approach, the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. The developed methods are applied to two problems: 1) an orbit transfer around the Earth and 2) a transfer between two distance retrograde orbits around Europa, the icy Galilean moon closest to Jupiter. The optimal solutions found with the present methods are comparable to other state-of-the-art trajectory optimizers, while the required computation time is often several orders of magnitude less thanks to an intelligent design of control vector discretization, advanced algorithmic parameterization, and parallel computing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary Computing Assisted Wireless Sensor Network Mining for QoS-Centric and Energy-efficient Routing Protocol

The exponential rise in wireless communication demands and allied applications have revitalized academia-industries to develop more efficient routing protocols. Wireless Sensor Network (WSN) being battery operated network, it often undergoes node death-causing pre-ma...

متن کامل

Low-Thrust Mission Trade Studies with Parallel, Evolutionary Computing1,2

1 1 0-7803-9546-8/06/$20.00© 2006 IEEE 2 IEEEAC paper #1042, Version 5, Updated Oct, 25 2005 Abs t rac t—New mission concepts are increasingly considering the use of ion propulsion for fuel-efficient navigation in deep space. The development of new lowthrust mission concepts requires efficient methods to rapidly determine feasibility and thoroughly explore trade spaces. This paper presents para...

متن کامل

Optimization of Very-low-thrust Trajectories Using Evolutionary Neurocontrol

Searching optimal interplanetary trajectories for low-thrust spacecraft is usually a difficult and time-consuming task that involves much experience and expert knowledge in astrodynamics and optimal control theory. This is because the convergence behavior of traditional local optimizers, which are based on numerical optimal control methods, depends on an adequate initial guess, which is often h...

متن کامل

Real-Time Navigation, Guidance, and Control of a UAV Using Low-Cost Sensors

Applying low-cost sensors for the Guidance, Navigation and Control (GNC) of an autonomous Uninhibited Aerial Vehicle (UAV) is an extremely challenging area. This paper presents the real-time results of applying a low-cost Inertial Measurement Unit (IMU) and Global Positioning System (GPS) receiver for the GNC. The INS/GPS navigation loop provides continuous and reliable navigation solutions to ...

متن کامل

Quaternion-based Finite-time Sliding Mode Controller Design for Attitude Tracking of a Rigid Spacecraft during High-thrust Orbital Maneuver in the Presence of Disturbance Torques

In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed controller results are compared with those of a quaternion feedback controller developed for the linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thrust...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005